Information-theoretic Semi-supervised Metric Learning via Entropy Regularization

نویسندگان

  • Gang Niu
  • Bo Dai
  • Makoto Yamada
  • Masashi Sugiyama
چکیده

We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize SERAPH by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that SERAPH compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rate Distortion Approach for Semi-Supervised Conditional Random Fields

We propose a novel information theoretic approach for semi-supervised learning of conditional random fields that defines a training objective to combine the conditional likelihood on labeled data and the mutual information on unlabeled data. In contrast to previous minimum conditional entropy semi-supervised discriminative learning methods, our approach is grounded on a more solid foundation, t...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-supervised learning for text classification using feature affinity regularization

Most conventional semi-supervised learning methods attempt to directly include unlabeled data into training objectives. This paper presents an alternative approach that learns feature affinity information from unlabeled data, which is incorporated into the training objective as regularization of a maximum entropy model. The regularization favors models for which correlated features have similar...

متن کامل

Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning

We propose squared-loss mutual information regularization (SMIR) for multi-class probabilistic classification, following the information maximization principle. SMIR is convex under mild conditions and thus improves the nonconvexity of mutual information regularization. It offers all of the following four abilities to semi-supervised algorithms: Analytical solution, out-of-sample/multi-class cl...

متن کامل

Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields

Entropy regularization is a straightforward and successful method of semi-supervised learning that augments the traditional conditional likelihood objective function with an additional term that aims to minimize the predicted label entropy on unlabeled data. It has previously been demonstrated to provide positive results in linear-chain CRFs, but the published method for calculating the entropy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2012